In vivo gene delivery by embryonic-stem-cell-derived astrocytes for malignant gliomas.
نویسندگان
چکیده
The treatment of malignant gliomas with current therapies remains a challenge in neurooncology. Our recent work showed that embryonic stem cell (ESC)-derived astrocytes conditionally expressing genes can be used to induce apoptosis in malignant glioma cells in vitro. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene has been shown to induce apoptosis in a variety of tumor cells, including gliomas. The aim of this study was to assess the proapoptotic effects of transgenic TRAIL delivered by ESC-derived astrocytes on malignant gliomas in vivo. Malignant glioma A172 cells were used to induce heterotopic xenografts in nude mice. ESC-derived astrocytes conditionally expressing TRAIL were injected into the xenografts. TRAIL expression was documented in the malignant glioma xenografts by reverse transcription PCR and immunohistochemistry after external gene induction. A significant reduction in tumor volume occurred 48 h after a single injection (14%) and double injections (31%) in the experimental groups. Terminal dUTP nick end labeling (TUNEL) revealed abundant apoptotic tumor cells in the experimental groups. Seven days after injection, the tumor had undergone severe necrosis, with only scattered residual tumor cells at the periphery. Death receptor DR4 expression increased significantly in the experimental groups compared with controls. Our data suggest that ESC-derived astrocytes conditionally expressing TRAIL should be considered as vectors to deliver gene therapy for malignant gliomas.
منابع مشابه
Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro
Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...
متن کاملP 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes
Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...
متن کاملEfficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes.
Human high-grade gliomas (hHGG) remain a therapeutic challenge in neuro-oncology despite current multimodality treatments. We recently demonstrated that murine embryonic stem cell (mESC)-derived astrocytes conditionally expressing proapoptotic genes can successfully be used to induce apoptosis and tumor shrinkage of hHGG tumor in vitro and in an in vivo mouse model. The first step in the transl...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملPretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention
Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor bec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-oncology
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2009